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ABSTRACT: In this article a non-linear optimization model of Oxygen production system is formulated. The production rate, 

pressure in storage tank, compressor power and storage tank volume are considered as the constraints of the model. The 

constraints in the formulated Oxygen production system model are handled by using 2-parameter-exponential penalty function. 

A novel optimization method based on a recently introduced Evolutionary Algorithm called Differential Evolution is described. 

Oxygen production system model is selected to demonstrate the capabilities and practical use of the method. The novel method 

is found easy to implement effectively, efficient and robust. The results obtained by this technique make it an attractive 

applicable approach for solving design problems in various engineering disciplines. The results are compared with previous 

studies also. 
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1. INTRODUCTION 
In simple terms, optimization is the attempt to maximize a 

system’s desirable properties while simultaneously 

minimizing its undesirable characteristics. What these 

properties are and how effectively they can be improved 

depends on the problem at hand [1]. Price and Storn 

developed DE to be a reliable and versatile function 

optimizer that is also easy to use [2].  

DE is a population-based optimizer that attacks the starting 

point problem by sampling the objective function at multiple, 

randomly chosen initial points. Preset parameter bounds 

define the domain from which the Np vectors in this initial 

population [3]. Each vector is indexed with a number from 0 

to Np-1. Like other population-based methods, DE generates 

new points that are perturbations of existing points, but these 

deviations are neither reflections like those in the CRS [4] 

and Nelder–Mead methods [5], nor samples from a 

predefined probability density function, like those in the ES 

[6]. Instead, DE perturbs vectors with the scaled difference of 

two randomly selected population vectors. To produce the 

trial vector, u0, DE adds the scaled, random vector difference 

to a third randomly selected population vector [7]. In the 

selection stage, the trial vector competes against the 

population vector of the same index, which in this case is 

number. The select-and-save step in which the vector with the 

lower objective function value is marked as a member of the 

next generation. Indicate that the procedure repeats until all 

Np population vectors have competed against a randomly 

generated trial vector. Once the last trial vector has been 

tested, the survivors of the Np pairwise competitions become 

parents for the next generation in the evolutionary cycle [8]. 

To change the constrained optimization into un-constrained 

one, by adding or subtracting the values from the objective 

functions is reported by [9-12]. 

In this script a mathematical model of Oxygen production 

system for minimum cost is reformulated and selected as a 

test case for the capabilities of DE methods. So far no such 

applications of these methods to such a challenging 

engineering optimization problem have been found. For 

selecting the best method there is a necessity to conduct 

comparative studies of their potential applications to modern 

world problems, like the one formulated in this study.  

 

2. MATERIALS AND METHODS 
The motivation for this research was to modify Oxygen 

production model. The Evolutionary method was used for the 

optimization of Oxygen production model. This method was 

basically designed for unconstrained optimization problems. 

In formulated optimization Oxygen production model the 

constraints were handled by 2-parameter-exponential penalty 

function. 

2.1. Differential Evolution 

Differential Evolution’s (DE) most versatile implementation 

maintains a pair of vector populations, both of which contain 

Np D-dimensional vectors of real-valued parameters. 

Differential evolution consist of the following steps [13, 14]: 

Initialization: The current population, symbolized by Px, is 

composed of those vectors, xi,g, that have already been found 

to be acceptable either as initial points, or by comparison 

with other vectors: 

 ,,, gigx xP  ,1,...,2,1,0  Npi max,...,,2,1,0 gg   (1) 

 ,,,, gijgi xx       ,1,...,2,1,0  Dj    

Indices start with 0 to simplify working with arrays and 

modular arithmetic. The index, g = 0, 1,..., gmax, indicates the 

generation to which a vector belongs. In addition, each vector 

is assigned a population index, i, which runs from 0 to Np − 

1. Parameters within vectors are indexed with j, which runs 

from 0 to D − 1. 

Before the population can be initialized, both upper and lower 

bounds for each parameter must be specified. These 2D 

values can be collected into two, D-dimensional initialization 

vectors, bL and bU, for which subscripts L and U indicate the 

lower and upper bounds, respectively. Once initialization 

bounds have been specified, a random number generator 

assigns each parameter of every vector a value from within 

the prescribed range. For example, the initial value (g = 0) of 

the j
th

 parameter of the i
th

 vector is 

  .).1,0( ,,,0,, LjLjUjjij bbbrandx             (2) 

The random number generator, randj (0, 1), returns a 

uniformly distributed random number from within the range 

[0, 1), i.e.,     0 ≤ randj (0, 1) < 1. The subscript, j, indicates 

that a new random value is generated for each parameter. 

Even if a variable is discrete or integral, it should be 
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initialized with a real value since DE internally treats all 

variables as floating-point values regardless of their type. 

Mutation: Once initialized, DE mutates randomly chosen 

vectors to produce an intermediary population, Pv,g, of Np 

mutant vectors, vi,g: 

 ,,, gigv vP  ,1,...,2,1,0  Npi max,...,,2,1,0 gg   (3) 

 ,,,, gijgi vv       ,1,...,2,1,0  Dj  

DE mutates and recombines the population to produce a 

population of Np trial vectors. In particular, differential 

mutation adds a scaled, randomly sampled, vector difference 

to a third vector. Eq. 4 shows how to combine three different, 

randomly chosen vectors to create a mutant vector, vi,g:  

 .. ,2,1,0, grgrgrgi xxFxv              (4) 

The scale factor, F ϵ (0, 1+), is a positive real number that 

controls the rate at which the population evolves. While there 

is no upper limit on F, effective values are seldom greater 

than 1.0. The base vector index, r0, can be determined in a 

variety of ways, but for now it is assumed to be a randomly 

chosen vector index that is different from the target vector 

index, i. Except for being distinct from each other and from 

both the base and target vector indices, the difference vector 

indices, r1 and r2, are also randomly selected once per mutant. 

Fig.1 illustrates how to construct the mutant, vi,g, in a two-

dimensional parameter space. 

 
Fig-1: Differential mutation: the weighted differential, F (xr1,g− 

xr2,g), is added to the base vector, xr0,g, to produce a mutant, vi,g. 

Crossover: Each vector in the current population is then 

recombined with a mutant to produce a trial population, Pu, 

of Np trial vectors, ui,g: 

 ,,, gigu uP  ,1,...,2,1,0  Npi
max,...,,2,1,0 gg           (5) 

 ,,,, gijgi uu       ,1,...,2,1,0  Dj  

During recombination, trial vectors overwrite the mutant 

population, so a single array can hold both populations. To 

complement the differential mutation search strategy, DE also 

employs uniform crossover. Sometimes referred to as discrete 

recombination, (dual) crossover builds trial vectors out of 

parameter values that have been copied from two different 

vectors. In particular, DE crosses each vector with a mutant 

vector: 

 




 


otherwisex

jjorCrrandifv
uu

gij

randjgij

gijgi

,,

,,

,,,

)1,0(
   (6) 

The crossover probability, Cr ϵ [0, 1], is a user-defined value 

that controls the fraction of parameter values that are copied 

from the mutant. To determine which source contributes a 

given parameter, uniform crossover compares Cr to the 

output of a uniform random number generator, randj (0, 1). If 

the random number is less than or equal to Cr, the trial 

parameter is inherited from the mutant, vi,g; otherwise, the 

parameter is copied from the vector, xi,g. In addition, the trial 

parameter with randomly chosen index, jrand, is taken from 

the mutant to ensure that the trial vector does not duplicate 

xi,g. Because of this additional demand, Cr only approximates 

the true probability, pCr, that a trial parameter will be 

inherited from the mutant. Fig. 2 plots the possible trial 

vectors that can result from uniformly crossing a mutant 

vector, vi,g, with the vector xi,g. 

 
Fig-2: The possible additional trial vectors u′i,g , u″i,g when xi,g 

and vi,g are uniformly crossed. 

Selection: If the trial vector, ui,g, has an equal or lower 

objective function value than that of its target vector, xi,g, it 

replaces the target vector in the next generation; otherwise, 

the target retains its place in the population for at least one 

more generation Eq. 7. By comparing each trial vector with 

the target vector from which it inherits parameters, DE more 

tightly integrates recombination and selection than do other 

EAs: 

   




 


otherwisex

xufifu
x

gi

gigigi

gi

,

,,,

1,
          (7) 

Once the new population is installed, the process of mutation, 

recombination and selection is repeated until the optimum is 

located, or a pre-specified termination criterion is satisfied, 

e.g., the number of generations reaches a preset maximum, 

gmax. 

2.2. Formulation of Oxygen production system: In this 

problem the prime objective was to minimize the cost of 

oxygen furnace. This oxygen furnace was used in chemical 

reactor for the supply of pure oxygen. Oxygen production 

system [15] contained oxygen plant, compressor and storage 

tank for oxygen furnace. Different kinds of variables were 

assigned and different kinds of constraints were generated, 

therefore the oxygen demanded varied with respect to time 

interval shown in Fig. 3. Here t1 was time interval for rate of 

low demand D0 and t2 - t1 time for rate of high demand D1. 

Oxygen plants were designed to provide oxygen at a fixed 

rate. 
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Fig-3: Cycle of demand  

 

 
Fig-4:  Oxygen production design 

The capacity of oxygen plant = D1.  

Assumptions:  Oxygen furnace and demand cycle were fixed, 

no external factors were imposed, storage tank had standard 

design and compression of ideal gas was isothermal.  

Total annual cost = oxygen production cost + compressor 

operating cost + compressor cost + storage vessel  

The model consisted on design equations that narrated 

independent variables   

Independent variables:   

Oxygen plant production rate F, 

The compressor H, 

Storage tank design capacities V, 

The maximum tank pressure p. 

Imax = maximum stored oxygen  

By using law of corrected gas as: 

  
    

 

  

 
   

where     

R = gas constant,  

T = gas temperature,  

ʑ = compressibility factor,  

M = molecular weight of Oxygen.  

From Fig. 3, maximum oxygen = area under the demand 

curve between t1 and t2 and D1 and F. Thus, 

           (        ) (         )                       (8) 
Put the value Imax in above equation 
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As we now that the gas flow rate = 
(     –   ) (     –     )

   
  

   
(          ) (           )

   
 

   

       
    (

 

   
)        (10) 

where   

k1 = unit conversion factor,  

k2 = compressor efficiency,  

    = oxygen delivery pressure. 

Rate of Oxygen plant F was sufficient, to supply the total 

demand of oxygen 

   
(          )       (           )

   
                      (11) 

Maximum pressure of tank > delivered Oxygen pressure 

                         (12) 

Oxygen plant annual cost was 

    (
  

    
)                                            (13) 

where a1 and a2 were empirical constants. 

Empirical constants = (fuel+ water+ labor) costs for plants.  

The capital cost for storage vessels  

By using power correlation law, as 

   (  )        
               (14) 

where b1 and b2 were empirical constants. 

Similarly capital compressors cost attained from a correlation 

was 

    (  )                      (15) 

where b3 and b4 were empirical constants. 

Whereas compressor power cost was approximately = b5t1H 

 where b5 was the power cost.  

Total cost function  

                        (       
            )                                   

(16) 
where 

  = number of cycles per year 

  =annual cost factor. 

To minimize eq. 16 represented complete design optimization 

problem that contained a suitable value of F, V, H, and p, 

cycle parameters were (N, D0, D1, t1, and t2), cost parameters 

were (a1, a2, b1 to b5, and d) and physical parameters were (T, 

  , k2, ʑ and M) [16]. 

By using the new variables:  

z1= production rate of oxygen plant,  

z2= pressure in storage tank,  

z3= compressor power and  

z4= storage tank volume.  

Non- linear programming model of oxygen design problem 

was as under 

                      (    
       

  )          

Subject to 

      (    )   (     ) 
          

      
(     )(     )

  

  

    

  (
  
  

) 

       
   

 

(     )(     )

  
 

z1, z2, z3, z4 ≥ 0 
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Table-1: Different parameters for Oxygen supply system 

Value of Cycle Parameters 

N Number of cycles per year 1 

Do Rate of low demand 2.5 

D1 Rate of High demand 40 

t1 Time for low demand 0.6 

t2 Time for High demand 2.5 

Value of Cost Parameters 

a1 Empirical constant (labor) 61.8 

a2 Empirical constant (fuel) 

 
5.72 

b1 Empirical constant (vessel) 

 
0.0175 

b2 Empirical constant (fitting) 

 
0.85 

b3 Empirical constant (installed) 

 
0.0094 

b4 Empirical constant (operating) 

 
0.75 

b5 Power cost 0.006 

d Annual cost factor 1 

Value of Physical Parameters 

T Gas temperature 20o 

   Oxygen delivery pressure 200 

k2 Compressor efficiency 0.5 

M Molecular weight of Oxygen 31.9999 

  Compressibility factor 28.2795 

The final non-linear programming model of oxygen design 

problem became as 
                         (        

             
    )

          

Subject to 

         

        

         
(     )(   )

   
  (

  

   
)  

           
(     )(   )

  
 

z1, z2, z3, z4 ≥ 0 

2.3. Constrained Handling 

The constrained problem is changed into unconstrained 

optimization problem using following penalty function [17] 
  1)( 2

1 
vR

eRxG  
where  

 v = max{0,g(x)} 

δ is such that 0< δ<1 

R1, R2 are constants 

v =  max {0,           ,          

                         
(     )(   )

   
  (

  

   
) , 

                         
(     )(   )

  
} 

                         (        
     

        
    )          + G(x).                          

 
3. RESULTS AND DISCUSSIONS 
Evolutionary methods were popular because of their 

simplicity, flexibility, and reliability [18]. These methods 

have been shown to satisfy the first-order necessary 

conditions for a minimizer i.e., convergence to a stationary 

point [19]. In most of the Evolutionary methods a set of 

directions that span the search space was sufficient 

information to investigate the global and local behavior of the 

function [20].  

As per study conducted by [16, 21] have reported the solution 

of the above formulated problem with different setting of 

parameters. The Oxygen production system was solved by 

using geometric programming approach considering smaller 

values of the parameters. The best solution of the problem 

also gave the minimum cost of $173.76 [21]. The same 

problem was solved by using gradient based method with a 

minimum cost of 173.83$ as reported by [16]. In this study 

the problem was solved by using DE method. The 

comparisons of the solutions found in this study are presented 

in table-2. 

 
Table-2: Comparison of results 

Sr. 

No. 

Power cost $/(HP-

HR) 

Production 

Rate 

Maximum 

Pressure 

Minimum power cost 

Jen [16] HJ[12] NM[12] DE 

1 0.0015 17.5 802.82062 172.21 172.11700 172.11705 172.11700 

2 0.003 17.5 658.19221 172.85 172.74737 172.74745 172.74734 

3 0.006 17.5 473.69271 173.83 173.74617 173.74621 173.7415 

4 0.009 17.5 361.23119 174.52 174.45393 174.45394 174.4539 

5 0.012 17.5 283.80233 175.95 174.91330 174.91335 174.9133 

6 0.018 17.500001 200.00000 175.07 175.06747 175.06741 175.0670 

7 0.024 17.500001 200 175.07 175.06 175.0601 175.06 

  

The previous studies witnessed that NM method was 

comparatively a low computation cost method. On the other 

hand HJ method provided guaranteed convergence for a 

number of differentiable functions. It was observed that the 

solutions which are shown in table 2 DE method gives 

slightly better value than the other three results. These 

comparisons show that these methods like HJ, NM and DE 

were yet better choices for solving such exponential type 

optimization problems in engineering design but DE method 

was more reliable. 

HJ method was terminated when the step length fell below 

10
-9

, NM was terminated when the maximum of 200×No of 

variables functions evaluation and DE was terminated when 

the maximum of 1000×No of variables functions evaluation 

were carried out. At these termination criteria the functions 
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evaluation by DE method was very much smaller than all 

methods. 

 
Fig-5: Comparison of function evaluations of NM, HJ and DE 

methods 

It was concluded that on the radical objective functions like 

the modeled one, DE method was a better and low cast choice 

for power cost rate.    
Table-3: Comparison of Function Evaluations between NM 

Method and HJ Method 

Power cost 
Function Evaluations 

NM Method HJ Method DE Method 

0.0015 346 392 68 

0.003 358 407 63 

0.006 399 267 75 

0.009 312 307 64 

0.012 362 332 76 

0.018 401 342 100 

0.024 400 342 96 

The above table also shows that when the power cost was 

small, the number of functions evaluation of NM method was 

less than that of HJ method and when the power cost 

increased gradually the performance of HJ method was 

getting better than NM method, but the performance of DE 

method was exceptional well and better than both the 

methods.   

For optimum results of Oxygen design problem, a general-

purpose solver was required. For numerical simulation of the 

oxygen design model, the programming environment of 

MATLAB was found to be quite supportive due to 

availability of a plenty of built-in functions. Another 

important advantage of MATLAB was the fact that 

parameters were easily settled for handling constraints.  

 
4. CONCLUSION  
The outcome performances of Differential Evolution, Hooke-

Jeeves and Nelder-Mead methods experimented via a number 

of initial guesses were carried out on formulated Oxygen 

production system. It was concluded that performance of DE 

method was better with respect to its efficiency of solving 

such a problem with minimum computational efforts as 

compared to those of HJ and NM methods. Through this 

work it is recommended that in any environment DE method 

is a better choice as compared to the class of methods 

involving HJ and NM methods. 
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